Extensions 1→N→G→Q→1 with N=C23×C7⋊C3 and Q=C2

Direct product G=N×Q with N=C23×C7⋊C3 and Q=C2
dρLabelID
C24×C7⋊C3112C2^4xC7:C3336,220

Semidirect products G=N:Q with N=C23×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×C7⋊C3)⋊1C2 = C2×Dic7⋊C6φ: C2/C1C2 ⊆ Out C23×C7⋊C356(C2^3xC7:C3):1C2336,130
(C23×C7⋊C3)⋊2C2 = C23×F7φ: C2/C1C2 ⊆ Out C23×C7⋊C356(C2^3xC7:C3):2C2336,216
(C23×C7⋊C3)⋊3C2 = C2×D4×C7⋊C3φ: C2/C1C2 ⊆ Out C23×C7⋊C356(C2^3xC7:C3):3C2336,165

Non-split extensions G=N.Q with N=C23×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×C7⋊C3).1C2 = C23.2F7φ: C2/C1C2 ⊆ Out C23×C7⋊C356(C2^3xC7:C3).1C2336,22
(C23×C7⋊C3).2C2 = C22×C7⋊C12φ: C2/C1C2 ⊆ Out C23×C7⋊C3112(C2^3xC7:C3).2C2336,129
(C23×C7⋊C3).3C2 = C22⋊C4×C7⋊C3φ: C2/C1C2 ⊆ Out C23×C7⋊C356(C2^3xC7:C3).3C2336,49
(C23×C7⋊C3).4C2 = C22×C4×C7⋊C3φ: trivial image112(C2^3xC7:C3).4C2336,164

׿
×
𝔽